欧美午夜精品久久久久免费视-亚洲国产精品无码久久久-鲁鲁狠狠狠7777一区二区-特黄aaaaaaa片免费视频

Welcome to LookChem.com Sign In|Join Free

CAS

  • or
METHYL 3-FLUOROBENZOATE, also known as 3-Fluorobenzoic Acid Methyl Ester (CAS# 455-68-5), is a colorless liquid compound that is useful in organic synthesis. It is characterized by its fluorinated benzoate structure, which provides unique chemical properties and reactivity compared to its non-fluorinated counterparts.

455-68-5

Post Buying Request

455-68-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

455-68-5 Usage

Uses

Used in Pharmaceutical Industry:
METHYL 3-FLUOROBENZOATE is used as an intermediate compound for the synthesis of various pharmaceuticals. Its fluorinated structure offers specific reactivity and properties that can be exploited in the development of new drugs with improved efficacy and selectivity.
Used in Chemical Synthesis:
METHYL 3-FLUOROBENZOATE is used as a building block in the synthesis of various organic compounds, including agrochemicals, dyes, and specialty chemicals. Its unique fluorinated structure can be utilized to create novel molecules with specific properties and applications.
Used in Material Science:
METHYL 3-FLUOROBENZOATE can be used as a component in the development of new materials with tailored properties, such as improved thermal stability, chemical resistance, or optical characteristics. Its fluorinated nature may contribute to the enhancement of these properties in the resulting materials.
Used in Research and Development:
METHYL 3-FLUOROBENZOATE serves as a valuable research tool for studying the effects of fluorination on the properties and reactivity of organic compounds. It can be used in academic and industrial research to explore new reaction pathways, develop innovative synthetic methods, and understand the fundamental chemistry of fluorinated molecules.

Check Digit Verification of cas no

The CAS Registry Mumber 455-68-5 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,5 and 5 respectively; the second part has 2 digits, 6 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 455-68:
(5*4)+(4*5)+(3*5)+(2*6)+(1*8)=75
75 % 10 = 5
So 455-68-5 is a valid CAS Registry Number.
InChI:InChI=1S/C8H7FO2/c1-11-8(10)6-3-2-4-7(9)5-6/h2-5H,1H3

455-68-5Relevant articles and documents

Design, synthesis, in vitro determination and molecular docking studies of 4-(1-(tert-butyl)-3-phenyl-1H-pyrazol-4-yl) pyridine derivatives with terminal sulfonamide derivatives in LPS-induced RAW264.7 macrophage cells

Mersal, Karim I.,Abdel-Maksoud, Mohammed S.,Ali, Eslam M. H.,Ammar, Usama M.,Zaraei, Seyed-Omar,Kim, Jae-Min,Kim, Su-Yeon,Lee, Kyung-Tae,Lee, Kwan Hyi,Kim, Si-Won,Park, Hyun-Mee,Ji, Mi-Jung,Oh, Chang-Hyun

, p. 1925 - 1942 (2021/08/30)

In the present work, a new series of 4-(1-(tert-butyl)-3-phenyl-1H-pyrazol-4-yl) pyridine possessing terminal ethyl or propyl sulfonamides was designed and synthesized. The cytotoxic effect of the final compounds was measured by applying MTT assay in LPS-Induced RAW264.7 macrophage cells. The final target compounds were screened for their anti-inflammatory effect through their ability to inhibit NO and PGE2 production and cytokines production (TNF-α, IL-6, IL-1β) in LPS-induced RAW264.7 macrophage at 10 μM concentration. Compounds 8d, 9d, and 9k showed the highest inhibitory effect on NO production. Compounds 8d and 9k exhibited high PGE2 inhibition with IC50 values of 3.47, 2.54 μM, respectively. Compounds 8d and 9k exhibited high cytokines inhibition ≥60%. The most potent compounds 8d and 9k were tested to determine their effect on iNOS and COX-2 mRNA expression level. Compound 9k activity on iNOS and COX-2 proteins level, pro-inflammatory mediators and cytokines was determined and showed remarkable inhibition for both proteins level. Compounds 8d, 9k showed high binding affinity to COX-2 active site and exhibited similar binding interactions of the native ligand celecoxib. [Figure not available: see fulltext.]

GPR52 Antagonist Reduces Huntingtin Levels and Ameliorates Huntington's Disease-Related Phenotypes

Wang, Congcong,Zhang, Yu-Fang,Guo, Shimeng,Zhao, Quan,Zeng, Yanping,Xie, Zhicheng,Xie, Xin,Lu, Boxun,Hu, Youhong

, p. 941 - 957 (2020/11/30)

GPR52 is an orphan G protein-coupled receptor (GPCR) that has been recently implicated as a potential drug target of Huntington's disease (HD), an incurable monogenic neurodegenerative disorder. In this research, we found that striatal knockdown of GPR52 reduces mHTT levels in adult HdhQ140 mice, validating GPR52 as an HD target. In addition, we discovered a highly potent and specific GPR52 antagonist Comp-43 with an IC50 value of 0.63 μM by a structure-activity relationship (SAR) study. Further studies showed that Comp-43 reduces mHTT levels by targeting GPR52 and promotes survival of mouse primary striatal neurons. Moreover, in vivo study showed that Comp-43 not only reduces mHTT levels but also rescues HD-related phenotypes in HdhQ140 mice. Taken together, our study confirms that inhibition of GPR52 is a promising strategy for HD therapy, and the GPR52 antagonist Comp-43 might serve as a lead compound for further investigation.

Sequential Ir/Cu-Mediated Method for the Meta-Selective C-H Radiofluorination of (Hetero)Arenes

Wright, Jay S.,Sharninghausen, Liam S.,Preshlock, Sean,Brooks, Allen F.,Sanford, Melanie S.,Scott, Peter J. H.

supporting information, p. 6915 - 6921 (2021/05/29)

This article describes a sequential Ir/Cu-mediated process for the meta-selective C-H radiofluorination of (hetero)arene substrates. In the first step, Ir-catalyzed C(sp2)-H borylation affords (hetero)aryl pinacolboronate (BPin) esters. The intermediate organoboronates are then directly subjected to copper-mediated radiofluorination with [18F]tetrabutylammonium fluoride to afford fluorine-18 labeled (hetero)arenes in high radiochemical yield and radiochemical purity. This entire process is performed on a benchtop without Schlenk or glovebox techniques and circumvents the need to isolate (hetero)aryl boronate esters. The reaction was automated on a TracerLab FXFN module with 1,3-dimethoxybenzene and a meta-tyrosine derivative. The products, [18F]1-fluoro-3,5-dimethoxybenzene and an 18F-labeled meta-tyrosine derivative, were obtained in 37 ± 5% isolated radiochemical yield and >99% radiochemical purity and 25% isolated radiochemical yield and 99% radiochemical purity, and 0.52 Ci/μmol (19.24 GBq/μmol) molar activity (Am), respectively.

Ruthenium-catalyzed hydrogenation of CO2as a route to methyl esters for use as biofuels or fine chemicals

Li, Yong,Liu, Qingbin,Ma, Yanping,Solan, Gregory A.,Sun, Wen-Hua,Wang, Zheng,Zhang, Qiuyue,Zhao, Ziwei,Zhong, Yanxia

, p. 6766 - 6774 (2020/08/25)

A novel robust diphosphine-ruthenium(ii) complex has been developed that can efficiently catalyze both the hydrogenation of CO2 to methanol and its in situ condensation with carboxylic acids to form methyl esters; a TON of up to 3260 is achievable for the CO2 to methanol step. Both aromatic and aliphatic carboxylic acids can be transformed to their corresponding methyl esters with high conversion and selectivity (17 aliphatic and 18 aromatic examples). On the basis of a series of experiments, a mechanism has been proposed to account for the various steps involved in the catalytic pathway. More importantly, this approach provides a promising route for using CO2 as a C1 source for the production of biofuels, fine chemicals and methanol.

Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents

Bai, Xue-Qian,Cui, Ming-Yue,Li, Chun-Shi,Liang, Cheng-Wu,Song, Ze-Wen,Wang, Hui-Yan,Zhang, Tian-Yi,Zheng, Xian-Jing

, (2020/05/08)

Twenty benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety were synthesized and evaluated for their anti-oxidant and anti-inflammatory activities. Among these compounds, 8h and 8l were appeared to have high radical scavenging efficacies as 0.05 ± 0.02 and 0.07 ± 0.03 mmol/L of IC50 values in ABTS+[rad] bioassay, respectively. In anti-inflammatory tests, compound 8h displayed good activity with 57.35% inhibition after intraperitoneal administration, which was more potent than the reference drug (indomethacin). Molecular modeling studies were performed to investigate the binding mode of the representative compound 8h into COX-2 enzyme. In vitro enzyme study implied that compound 8h exerted its anti-inflammatory activity through COX-2 inhibition.

Discovery of [1,2,4]triazole derivatives as new metallo-β-lactamase inhibitors

Yuan, Chen,Yan, Jie,Song, Chen,Yang, Fan,Li, Chao,Wang, Cheng,Su, Huiling,Chen, Wei,Wang, Lijiao,Wang, Zhouyu,Qian, Shan,Yang, Lingling

, (2020/01/11)

The emergence and spread of metallo-β-lactamase (MBL)-mediated resistance to β-lactam antibacterials has already threatened the global public health. A clinically useful MBL inhibitor that can reverse β-lactam resistance has not been established yet. We here report a series of [1,2,4]triazole derivatives and analogs, which displayed inhibition to the clinically relevant subclass B1 (Verona integron-encoded MBL-2) VIM-2. 3-(4-Bromophenyl)-6,7-dihydro-5H-[1,2,4]triazolo [3,4-b][1,3]thiazine (5l) manifested the most potent inhibition with an IC50 (half-maximal inhibitory concentration) value of 38.36 μM. Investigations of 5l against other B1 MBLs and the serine β-lactamases (SBLs) revealed the selectivity to VIM-2. Molecular docking analyses suggested that 5l bound to the VIM-2 active site via the triazole involving zinc coordination and made hydrophobic interactions with the residues Phe61 and Tyr67 on the flexible L1 loop. This work provided new triazole-based MBL inhibitors and may aid efforts to develop new types of inhibitors combating MBL-mediated resistance.

Palladium-Catalyzed, Copper(I)-Promoted Methoxycarbonylation of Arylboronic Acids with O-Methyl S-Aryl Thiocarbonates

Cao, Ya-Fang,Li, Ling-Jun,Liu, Min,Xu, Hui,Dai, Hui-Xiong

, p. 4475 - 4481 (2020/04/10)

Here, we report O-methyl S-aryl thiocarbonates as a versatile esterification reagent for palladium-catalyzed methoxycarbonylation of arylboronic acid in the presence of copper(I) thiophene-2-carboxylate (CuTC). The reaction condition is mild, and a variety of substituents including sensitive-Cl,-Br, and free-NH2 could be tolerated. Further applications in the late-stage esterification of some pharmaceutical drugs demonstrate the broad utility of this method.

1,3-Dibromo-5,5-dimethylhydantoin as a Precatalyst for Activation of Carbonyl Functionality

?ebular, Klara,Bo?i?, Bojan ?.,Stavber, Stojan

supporting information, (2019/08/01)

Activation of carbonyl moiety is one of the most rudimentary approaches in organic synthesis and is crucial for a plethora of industrial-scale condensation reactions. In esterification and aldol condensation, which represent two of the most important reactions, the susceptibility of the carbonyl group to nucleophile attack allows the construction of a variety of useful organic compounds. In this context, there is a constant need for development of and improvement in the methods for addition-elimination reactions via activation of carbonyl functionality. In this paper, an advanced methodology for the direct esterification of carboxylic acids and alcohols, and for aldol condensation of aldehydes using widely available, inexpensive, and metal-free 1,3-dibromo-5,5-dimethylhydantoin under neat reaction conditions is reported. The method is air- and moisture-tolerant, allowing simple synthetic and isolation procedures for both reactions presented in this paper. The reaction pathway for esterification is proposed and a scale-up of certain industrially important derivatives is performed.

SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents

Del Poeta, Maurizio,Haranahalli, Krupanandan,Lazzarini, Cristina,Mallamo, John,McCarthy, J. Brian,Ojima, Iwao,Pathiranage, Senuri,Sun, Yi,Zambito, Julia

, (2019/09/06)

Recently, the fungal sphingolipid glucosylceramide (GlcCer) synthesis has emerged as a highly promising new target for drug discovery of next-generation antifungal agents, and we found two aromatic acylhydrazones as effective inhibitors of GlcCer synthesis based on HTP screening. In the present work, we have designed libraries of new aromatic acylhydrazones, evaluated their antifungal activities (MIC80 and time-kill profile) against C. neoformans, and performed an extensive SAR study, which led to the identification of five promising lead compounds, exhibiting excellent fungicidal activities with very large selectivity index. Moreover, two compounds demonstrated broad spectrum antifungal activity against six other clinically relevant fungal strains. These five lead compounds were examined for their synergism/cooperativity with five clinical drugs against seven fungal strains, and very encouraging results were obtained; e.g., the combination of all five lead compounds with voriconazole exhibited either synergistic or additive effect to all seven fungal strains.

Aldehydes as potential acylating reagents for oxidative esterification by inorganic ligand-supported iron catalysis

Yu, Han,Wang, Jingjing,Wu, Zhikang,Zhao, Qixin,Dan, Demin,Han, Sheng,Tang, Jiangjiang,Wei, Yongge

supporting information, p. 4550 - 4554 (2019/08/21)

The oxidative esterification of various aldehydes with alcohols could be achieved by a heterogeneous iron(iii) catalyst supported on a ring-like POM inorganic ligand under mild conditions, affording the corresponding esters, including several drug molecules and natural products, in high yields. ESI-MS and control experiments demonstrated that POM-FeV(O) was the active catalytic species and the plausible mechanism was presented. More importantly, the 6th run of the iron catalyst recycles shows only a slight decrease in the yield.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 455-68-5