欧美午夜精品久久久久免费视-亚洲国产精品无码久久久-鲁鲁狠狠狠7777一区二区-特黄aaaaaaa片免费视频

Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4-Bromobenzophenone is an organic compound that consists of a benzophenone molecule with a bromine atom attached at the 4-position. It is a white crystalline solid with a molecular formula of C13H9BrO and a molecular weight of 257.11 g/mol. 4-BROMOBENZOPHENONE is known for its chemical stability, reactivity, and various applications in different industries.

90-90-4

Post Buying Request

90-90-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

90-90-4 Usage

Uses

Used in Analytical Applications:
4-Bromobenzophenone is used as a component in high-performance liquid chromatography (HPLC) and gas chromatography (GC) for the separation and analysis of various compounds. Its unique chemical properties make it suitable for use as a stationary phase or derivatization agent, enhancing the selectivity and sensitivity of these analytical techniques.
Used in Chemical Synthesis:
As a chemical reagent, 4-bromobenzophenone plays a crucial role in the synthesis of various organic compounds. Its reactivity allows it to undergo a range of chemical reactions, such as nucleophilic substitution, electrophilic aromatic substitution, and coupling reactions, making it a versatile building block for the production of pharmaceuticals, agrochemicals, and other specialty chemicals.
Used in Pharmaceutical Industry:
4-Bromobenzophenone serves as an important intermediate in the synthesis of pharmaceutical compounds. Its unique structure and reactivity enable the development of new drugs with improved therapeutic properties. It is used in the production of various drug candidates, including antidepressants, anti-inflammatory agents, and other therapeutic agents.

Synthesis Reference(s)

The Journal of Organic Chemistry, 31, p. 2708, 1966 DOI: 10.1021/jo01346a526Tetrahedron Letters, 27, p. 929, 1986 DOI: 10.1016/S0040-4039(00)84140-4

Purification Methods

Crystallise the phenone from EtOH. The 2,4-dinitrophenylhydrazone forms orange-red leaflets from dioxane/EtOH with m 207-209o. [Allen & Van Allan J Am Chem Soc 66 7 1944, Beilstein 7 H 422, 7 III 2079, 7 IV 1378.]

Check Digit Verification of cas no

The CAS Registry Mumber 90-90-4 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 9 and 0 respectively; the second part has 2 digits, 9 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 90-90:
(4*9)+(3*0)+(2*9)+(1*0)=54
54 % 10 = 4
So 90-90-4 is a valid CAS Registry Number.
InChI:InChI=1/C13H9BrO/c14-12-8-6-11(7-9-12)13(15)10-4-2-1-3-5-10/h1-9H

90-90-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A14755)  4-Bromobenzophenone, 98%   

  • 90-90-4

  • 25g

  • 293.0CNY

  • Detail
  • Alfa Aesar

  • (A14755)  4-Bromobenzophenone, 98%   

  • 90-90-4

  • 100g

  • 905.0CNY

  • Detail
  • Alfa Aesar

  • (A14755)  4-Bromobenzophenone, 98%   

  • 90-90-4

  • 250g

  • 1803.0CNY

  • Detail

90-90-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-BROMOBENZOPHENONE

1.2 Other means of identification

Product number -
Other names (4-bromophenyl)-phenylmethanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:90-90-4 SDS

90-90-4Relevant articles and documents

Halogen Bonding Tetraphenylethene Anion Receptors: Anion-Induced Emissive Aggregates and Photoswitchable Recognition

Beer, Paul D.,Davis, Jason J.,Docker, Andrew,Kuhn, Heike,Langton, Matthew J.,Shang, Xiaobo,Yuan, Daohe,Zhang, Zongyao

supporting information, p. 19442 - 19450 (2021/07/31)

A series of tetraphenylethene (TPE) derivatives functionalized with highly potent electron-deficient perfluoroaryl iodo-triazole halogen bond (XB) donors for anion recognition are reported. 1H NMR titration experiments, fluorescence spectroscopy, dynamic light scattering measurements, TEM imaging and X-ray crystal structure analysis reveal that the tetra-substituted halogen bonding receptor forms luminescent nanoscale aggregates, the formation of which is driven by XB-mediated anion coordination. This anion-coordination-induced aggregation effect serves as a powerful sensory mechanism, capable of luminescence chloride sensing at parts per billion concentration. Furthermore, the doubly substituted geometric isomers act as unprecedented photoswitchable XB donor anion receptors, where the composition of the photostationary state can be modulated by the presence of a coordinating halide anion.

AIBN initiated functionalization of the benzylic sp3 C[sbnd]H and C[sbnd]C bonds in the presence of dioxygen

Hu, Yingying,Shao, Yu,Zhang, Shuwei,Yuan, Yuan,Sun, Zheng,Yuan, Yu,Jia, Xiaodong

supporting information, (2021/02/01)

A sp3 C[sbnd]H bond functionalization and C[sbnd]C bond cleavage were realized by AIBN/O2 catalyst system, providing a series of benzophenones under mild reaction conditions. The mechanistic study shows that a peroxide intermediate is involved in this transformation, and in the case of diphenylmethanes, the sp3 C[sbnd]C bond is cleaved through the peroxide rearrangement, which might provides a new way to cleave relatively strong C[sbnd]C bond and be applied to more general C[sbnd]C bond activation.

Recyclable Transition Metal Catalysis using Bipyridine-Functionalized SBA-15 by Co-condensation of Methallylsilane with TEOS

Han, Ye Ri,Kim, Jae Soon,Park, Woo-Jin,Lee, Chang-Hee,Cheon, Jinwoo,Jun, Chul-Ho

supporting information, p. 197 - 201 (2021/01/18)

Well-defined recyclable Pd- and Rh-bipyridyl group-impregnated SBA-15 catalysts were prepared for C?C bond coupling reaction and selective hydrogenation reactions, respectively. These SBA-15 derived ligands for the catalysts were prepared by direct and indirect co-condensation method using bipyridyl-linked methallylsilane. This indirect method, involving methoxysilane generated from methallylsilane shows higher loading efficiency of transition metal catalysts on SBA-15 than the direct use of methallylsilane.

Fe-S Catalyst Generated in Situ from Fe(III)- And S3?--Promoted Aerobic Oxidation of Terminal Alkenes

Ai, Jing-Jing,Huang, Cheng-Mi,Li, Jian,Liu, Bei-Bei,Rao, Weidong,Wang, Fei,Wang, Shun-Yi

supporting information, p. 4705 - 4709 (2021/06/28)

An iron-sulfur complex formed by the simple mixture of FeCl3 with S3?- generated in situ from K2S is developed and applied to selective aerobic oxidation of terminal alkenes. The reaction was carried out under an atmosphere of O2 (balloon) and could proceed on a gram scale, expanding the application of S3?- in organic synthesis. This study also encourages us to explore the application of an Fe-S catalyst in organic reactions.

Photo-induced oxidative cleavage of C-C double bonds of olefins in water

Zhang, Yilan,Yue, Xiaoguang,Liang, Chenfeng,Zhao, Jianming,Yu, Wenbo,Zhang, Pengfei

supporting information, (2021/08/27)

The carbonyl compounds, synthesized by the oxidative cleavage of their corresponding olefins, are of great significance in organic synthesis, especially aryl ketones. We have developed a gentle and effective protocol, using acid red 94 as the organic metal-free photocatalyst, O2 as the oxidant, and water as the solvent. Under visible light irradiation, aryl ketone derivatives were obtained in moderate to excellent yields, showing good economic and environmental advantages.

Nitrosoarene-Catalyzed HFIP-Assisted Transformation of Arylmethyl Halides to Aromatic Carbonyls under Aerobic Conditions

Pradhan, Suman,Sharma, Vishali,Chatterjee, Indranil

supporting information, p. 6148 - 6152 (2021/08/03)

A rare metal-free nucleophilic nitrosoarene catalysis accompanied by highly hydrogen-bond-donor (HBD) solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), organocatalytically converts arylmethyl halides to aromatic carbonyls. This protocol offers an effective means to access a diverse array of aromatic carbonyls with good chemoselectivity under mild reaction conditions. The activation of arylmethyl halides by HFIP to generate stable carbocation and autoxidation of in situ generated hydroxylamine to nitrosoarene in the presence of atmospheric O2 are the keys to success.

Pd-Catalysed carbonylative Suzuki-Miyaura cross-couplings using Fe(CO)5under mild conditions: generation of a highly active, recyclable and scalable ‘Pd-Fe’ nanocatalyst

Zhu, Zhuangli,Wang, Zhenhua,Jian, Yajun,Sun, Huaming,Zhang, Guofang,Lynam, Jason M.,McElroy, C. Robert,Burden, Thomas J.,Inight, Rebecca L.,Fairlamb, Ian J. S.,Zhang, Weiqiang,Gao, Ziwei

supporting information, p. 920 - 926 (2021/02/09)

The dual function and role of iron(0) pentacarbonyl [Fe(CO)5] has been identified in gaseous CO-free carbonylative Suzuki-Miyaura cross-couplings, in which Fe(CO)5supplied COin situ, leading to the propagation of catalytically active Pd-Fe nanoparticles. Compared with typical carbonylative reaction conditions, CO gas (at high pressures), specialised exogenous ligands and inert reaction conditions were avoided. Our developed reaction conditions are mild, do not require specialised CO high pressure equipment, and exhibit wide functional group tolerance, giving a library of biaryl ketones in good yields.

Palladium supported on MRGO@CoAl-LDH catalyzed reductive carbonylation of nitroarenes and carbonylative Suzuki coupling reactions using formic acid as liquid CO and H2 source

Jadidi Nejad, Masoumeh,Heydari, Akbar

, (2021/07/17)

In the present study, a heterogeneous palladium catalyst system, Pd nanoparticles supported on MRGO@CoAl-LDH, was synthesized and employed in reductive carbonylation of nitroarenes and carbonylative Suzuki coupling reactions using formic acid as CO and H2 source. The as-obtained heterogeneous catalyst was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The nanocatalyst was reused for 5 cycles with a negligible reduction in the yield of products. All reactions were carried out with high yields and under suitable and safe conditions. Also, we have successfully applied formic acid as a good and safe alternative to CO and H2 gases.

Self-Assembled 2,3-Dicyanopyrazino Phenanthrene Aggregates as a Visible-Light Photocatalyst

He, Min,Yu, Xiaoqiang,Wang, Yi,Li, Fei,Bao, Ming

, p. 5016 - 5025 (2021/04/12)

In this study, 2,3-dicyanopyrazino phenanthrene (DCPP), a commodity chemical that can be prepared at an industrial scale, was used as a photocatalyst in lieu of Ru or Ir complexes in C-X (X = C, N, and O) bond-forming reactions under visible-light irradiation. In these reactions, [DCPP]n aggregates were formed in situ through physical π-πstacking of DCPP monomers in organic solvents. These aggregates exhibited excellent photo- and electrochemical properties, including a visible light response (430 nm), long excited-state lifetime (19.3 μs), high excited-state reduction potential (Ered([DCPP]n*/[DCPP]n·-) = +2.10 V vs SCE), and good reduction stability. The applications of [DCPP]n aggregates as a versatile visible-light photocatalyst were demonstrated in decarboxylative C-C cross-coupling, amidation, and esterification reactions.

Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladium-Catalyzed External-CO-Free Carbonylative Cross-Coupling Reactions

Li, Xiong,Xu, Jie,Li, Yue,Kramer, S?ren,Skrydstrup, Troels,Lian, Zhong

supporting information, p. 4078 - 4083 (2020/07/30)

A palladium-catalyzed external-CO-free carbonylative Hiyama-Denmark cross-coupling reaction is presented. The introduction of silylcarboxylic acids as bifunctional reagents (CO and nucleophile source) avoids the need for external gaseous CO and a silylarene coupling partner. The transformation features high functional group tolerance and it is successful with electron-rich, -neutral, and -poor aryl iodides. Stoichiometric studies and control experiments provide insight into the reaction mechanism and support the hypothesized dual role of silylcarboxylic acids. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 90-90-4