90-90-4Relevant articles and documents
Halogen Bonding Tetraphenylethene Anion Receptors: Anion-Induced Emissive Aggregates and Photoswitchable Recognition
Beer, Paul D.,Davis, Jason J.,Docker, Andrew,Kuhn, Heike,Langton, Matthew J.,Shang, Xiaobo,Yuan, Daohe,Zhang, Zongyao
supporting information, p. 19442 - 19450 (2021/07/31)
A series of tetraphenylethene (TPE) derivatives functionalized with highly potent electron-deficient perfluoroaryl iodo-triazole halogen bond (XB) donors for anion recognition are reported. 1H NMR titration experiments, fluorescence spectroscopy, dynamic light scattering measurements, TEM imaging and X-ray crystal structure analysis reveal that the tetra-substituted halogen bonding receptor forms luminescent nanoscale aggregates, the formation of which is driven by XB-mediated anion coordination. This anion-coordination-induced aggregation effect serves as a powerful sensory mechanism, capable of luminescence chloride sensing at parts per billion concentration. Furthermore, the doubly substituted geometric isomers act as unprecedented photoswitchable XB donor anion receptors, where the composition of the photostationary state can be modulated by the presence of a coordinating halide anion.
AIBN initiated functionalization of the benzylic sp3 C[sbnd]H and C[sbnd]C bonds in the presence of dioxygen
Hu, Yingying,Shao, Yu,Zhang, Shuwei,Yuan, Yuan,Sun, Zheng,Yuan, Yu,Jia, Xiaodong
supporting information, (2021/02/01)
A sp3 C[sbnd]H bond functionalization and C[sbnd]C bond cleavage were realized by AIBN/O2 catalyst system, providing a series of benzophenones under mild reaction conditions. The mechanistic study shows that a peroxide intermediate is involved in this transformation, and in the case of diphenylmethanes, the sp3 C[sbnd]C bond is cleaved through the peroxide rearrangement, which might provides a new way to cleave relatively strong C[sbnd]C bond and be applied to more general C[sbnd]C bond activation.
Recyclable Transition Metal Catalysis using Bipyridine-Functionalized SBA-15 by Co-condensation of Methallylsilane with TEOS
Han, Ye Ri,Kim, Jae Soon,Park, Woo-Jin,Lee, Chang-Hee,Cheon, Jinwoo,Jun, Chul-Ho
supporting information, p. 197 - 201 (2021/01/18)
Well-defined recyclable Pd- and Rh-bipyridyl group-impregnated SBA-15 catalysts were prepared for C?C bond coupling reaction and selective hydrogenation reactions, respectively. These SBA-15 derived ligands for the catalysts were prepared by direct and indirect co-condensation method using bipyridyl-linked methallylsilane. This indirect method, involving methoxysilane generated from methallylsilane shows higher loading efficiency of transition metal catalysts on SBA-15 than the direct use of methallylsilane.
Fe-S Catalyst Generated in Situ from Fe(III)- And S3?--Promoted Aerobic Oxidation of Terminal Alkenes
Ai, Jing-Jing,Huang, Cheng-Mi,Li, Jian,Liu, Bei-Bei,Rao, Weidong,Wang, Fei,Wang, Shun-Yi
supporting information, p. 4705 - 4709 (2021/06/28)
An iron-sulfur complex formed by the simple mixture of FeCl3 with S3?- generated in situ from K2S is developed and applied to selective aerobic oxidation of terminal alkenes. The reaction was carried out under an atmosphere of O2 (balloon) and could proceed on a gram scale, expanding the application of S3?- in organic synthesis. This study also encourages us to explore the application of an Fe-S catalyst in organic reactions.
Photo-induced oxidative cleavage of C-C double bonds of olefins in water
Zhang, Yilan,Yue, Xiaoguang,Liang, Chenfeng,Zhao, Jianming,Yu, Wenbo,Zhang, Pengfei
supporting information, (2021/08/27)
The carbonyl compounds, synthesized by the oxidative cleavage of their corresponding olefins, are of great significance in organic synthesis, especially aryl ketones. We have developed a gentle and effective protocol, using acid red 94 as the organic metal-free photocatalyst, O2 as the oxidant, and water as the solvent. Under visible light irradiation, aryl ketone derivatives were obtained in moderate to excellent yields, showing good economic and environmental advantages.
Nitrosoarene-Catalyzed HFIP-Assisted Transformation of Arylmethyl Halides to Aromatic Carbonyls under Aerobic Conditions
Pradhan, Suman,Sharma, Vishali,Chatterjee, Indranil
supporting information, p. 6148 - 6152 (2021/08/03)
A rare metal-free nucleophilic nitrosoarene catalysis accompanied by highly hydrogen-bond-donor (HBD) solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), organocatalytically converts arylmethyl halides to aromatic carbonyls. This protocol offers an effective means to access a diverse array of aromatic carbonyls with good chemoselectivity under mild reaction conditions. The activation of arylmethyl halides by HFIP to generate stable carbocation and autoxidation of in situ generated hydroxylamine to nitrosoarene in the presence of atmospheric O2 are the keys to success.
Pd-Catalysed carbonylative Suzuki-Miyaura cross-couplings using Fe(CO)5under mild conditions: generation of a highly active, recyclable and scalable ‘Pd-Fe’ nanocatalyst
Zhu, Zhuangli,Wang, Zhenhua,Jian, Yajun,Sun, Huaming,Zhang, Guofang,Lynam, Jason M.,McElroy, C. Robert,Burden, Thomas J.,Inight, Rebecca L.,Fairlamb, Ian J. S.,Zhang, Weiqiang,Gao, Ziwei
supporting information, p. 920 - 926 (2021/02/09)
The dual function and role of iron(0) pentacarbonyl [Fe(CO)5] has been identified in gaseous CO-free carbonylative Suzuki-Miyaura cross-couplings, in which Fe(CO)5supplied COin situ, leading to the propagation of catalytically active Pd-Fe nanoparticles. Compared with typical carbonylative reaction conditions, CO gas (at high pressures), specialised exogenous ligands and inert reaction conditions were avoided. Our developed reaction conditions are mild, do not require specialised CO high pressure equipment, and exhibit wide functional group tolerance, giving a library of biaryl ketones in good yields.
Palladium supported on MRGO@CoAl-LDH catalyzed reductive carbonylation of nitroarenes and carbonylative Suzuki coupling reactions using formic acid as liquid CO and H2 source
Jadidi Nejad, Masoumeh,Heydari, Akbar
, (2021/07/17)
In the present study, a heterogeneous palladium catalyst system, Pd nanoparticles supported on MRGO@CoAl-LDH, was synthesized and employed in reductive carbonylation of nitroarenes and carbonylative Suzuki coupling reactions using formic acid as CO and H2 source. The as-obtained heterogeneous catalyst was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The nanocatalyst was reused for 5 cycles with a negligible reduction in the yield of products. All reactions were carried out with high yields and under suitable and safe conditions. Also, we have successfully applied formic acid as a good and safe alternative to CO and H2 gases.
Self-Assembled 2,3-Dicyanopyrazino Phenanthrene Aggregates as a Visible-Light Photocatalyst
He, Min,Yu, Xiaoqiang,Wang, Yi,Li, Fei,Bao, Ming
, p. 5016 - 5025 (2021/04/12)
In this study, 2,3-dicyanopyrazino phenanthrene (DCPP), a commodity chemical that can be prepared at an industrial scale, was used as a photocatalyst in lieu of Ru or Ir complexes in C-X (X = C, N, and O) bond-forming reactions under visible-light irradiation. In these reactions, [DCPP]n aggregates were formed in situ through physical π-πstacking of DCPP monomers in organic solvents. These aggregates exhibited excellent photo- and electrochemical properties, including a visible light response (430 nm), long excited-state lifetime (19.3 μs), high excited-state reduction potential (Ered([DCPP]n*/[DCPP]n·-) = +2.10 V vs SCE), and good reduction stability. The applications of [DCPP]n aggregates as a versatile visible-light photocatalyst were demonstrated in decarboxylative C-C cross-coupling, amidation, and esterification reactions.
Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladium-Catalyzed External-CO-Free Carbonylative Cross-Coupling Reactions
Li, Xiong,Xu, Jie,Li, Yue,Kramer, S?ren,Skrydstrup, Troels,Lian, Zhong
supporting information, p. 4078 - 4083 (2020/07/30)
A palladium-catalyzed external-CO-free carbonylative Hiyama-Denmark cross-coupling reaction is presented. The introduction of silylcarboxylic acids as bifunctional reagents (CO and nucleophile source) avoids the need for external gaseous CO and a silylarene coupling partner. The transformation features high functional group tolerance and it is successful with electron-rich, -neutral, and -poor aryl iodides. Stoichiometric studies and control experiments provide insight into the reaction mechanism and support the hypothesized dual role of silylcarboxylic acids. (Figure presented.).